MOG Antibody Associated Disorders and optic neuritis

Eugene May, MD
Swedish Neuro-ophthalmology
Seattle, WA
MOG Antibody Associated Disorders

• Take home points
 • MOG is distinct from NMOSD with AQP-4 IgG and MS
 • MOG clinical profile is distinctive and recognizable
 • MOG ON is uncommon but recognizable
Case One

- 34 y.o. healthy AA man
- Feb 2017 bilateral ON to 20/200 OD, 20/50 OS
 - Swollen optic discs
 - Much better with 5 d IVMP, prednisone taper
 - Brain and spine MRIs normal
 - Orbital MRI Longitudinally Extensive ON OU
 - LP 6 WBC, pro 40, no OCB
- Mar 2017 recurrence OD
 - Much better again in OU with IVMP
- Feb 2018: vision 20/20 OU with optic atrophy
- Apr 2018: ON OD, Rx IVMP, good recovery
- Apr 2018: MOG IgG ab positive
Case Two

• 29 y.o. Cauc Man
• ADEM age 5
• ADEM with Bilateral ON age 11
 • Vision worsened with each pred taper
 • Resolved with IVIG
• Rx mycophenolate ages 13 – 27 (“demyelinating illness”)
 • Discontinued 2017 for no clear indication
• August 2018 (age 28): ON OS, both discs pale
 • Rx IVMP, VA improved from 20/125 to 20/30
• MOG IgG positive
MOG Antibody Associated Disorders

- MOG
- MOG antibody
- MOG syndrome
 - Adult
 - Compare to MS, NMO
- MOG optic neuritis
- Treatment

Myelin Oligodendrocyte Glycoprotein
Myelin Oligodendrocyte Glycoprotein

- Glycoprotein
 - 218 amino acids
- Expressed in oligodendrocytes of mammal CNS
- Biological role is not clear
MOG IgG Antibody

• Animal Models
 • Elicits a demyelinating immune response
 • Mice with T and B cells that target MOG develop an opticospinal form

• Human MOG IgG *in vitro*
 • Leads to oligodendrocyte damage

Immunohistochemical staining of mouse brainstem shows strong immunoreactivity in myelinated neural processes.
MOG IgG Antibody Testing

- Western Blot and ELISA nonspecific
 - Denatured MOG
 - Pediatric ADEM
 - Variable presence in MS
- Cell-based assay more specific
 - Full-length protein
 - Rare in adults with MS
- NMO Spectrum Disorder
 - 30% AQP-4 negative
 - MOG Ab in 25-40% of AQP-4 negative NMOSD
MOG Antibody Associated Disorders

- Phenotype
 - ON 41-63%
 - TM 30%
 - ADEM-like varies based on age
 - Brainstem syndromes (incl. area postrema) up to 30%
 - Many do not fulfill 2015 diagnostic criteria for NMOSD
MOG Antibody Associated Disorders in adults

• Demographics
 • Numbers in series still small
 • Selection bias
 • Mostly white
 • Female = male
 • No associated systemic autoimmunity
 • Recent case report a/w Sjogren’s
MOG Antibody Associated Disorders

• Relapses
 • Monophasic or relapsing
 • Frequency
 • 50% relapse in first two years after presentation
 • 75% relapse by five years

• Titers
 • Higher at time of relapse
 • Up to 50% become antibody negative after relapse
 • Persistent positivity indicates higher risk of relapse
MOG Antibody Associated Disorders

• Disability
 • Outcomes likely better than NMO
 • Severity of relapse may be the same but relapse outcome better than NMO
 • Severe persistent disability in 40-75%
 • Sphincter>cognitive>visual>mobility
 • Disability driven by severity of first attack (70%) and frequency of attacks
 • Progression not described to date
MOG Antibody Associated Disorders

- Histopathologic data is limited (<10)
 - Similar to MS pattern II
 - T cell and macrophage infiltration
 - Complement deposits in macrophages
 - Reactive astrocytes
 - Preservation of mature oligodendrocytes

- Clearly distinct from AQP-4 NMO
 - perivascular complement, loss of AQP-4 expression, astrocytopathy
Brain MRI

- More brainstem and cerebellar than supratentorial lesions
- Acute enhancement
- Thalamic and cortical lesions common
- Less demarcated and more fuzzy compared to NMO and MS
Myelitis

• Can present along with ON or ADEM
• Severity varies
• Recovery better than NMO
• Persistent sphincter dysfunction
Spine MRI

• 80% longitudinally extensive
 • Rare in MS
• Multiple lesions including conus (75%)
 • Conus involvement uncommon in MS, rare in NMO
• 65% anterior, 30% homogeneous
 • Often confined to grey matter
• T1
 • Hypointense
 • Usually enhance acutely, but less commonly than NMO and MS
MS Overlap

- 5% of MS patients are MOG-IgG positive
 - Mostly severe, relapsing brainstem and spinal syndromes
 - May show evolution in space and time on MRI but lesions not typical

CSF

- Pleocytosis 40-50%
 - >50 in 42%
 - Highest reported 306 WBC
 - Lymphocytic predominance
- Elevated protein 33-40%
- OCB rare, Ig index usually normal
 - MOG IgG in CSF in 70% of seropositive subjects
MOG Optic Neuritis
Optic neuritis

• Clinical characteristics
• Is it isolated or indicative of more widespread neurologic disease?
Optic neuritis

- The Optic Neuritis Treatment Trial (ONTT)
 - Visual outcome good and same in MS vs. non MS group
 - Steroid treatment has no effect on outcome
 - 15 year risk of MS is 50%
 - 80+% with abnormal MRI
 - 20+% with normal MRI
 - Tests not useful
 - ANA, VDRL, CXR

- MS optic neuritis
 - Usually retrobulbar (2/3)
 - Usually unilateral symptoms
NMO optic neuritis

• Generally poor visual outcome
• Longitudinally extensive optic neuritis on MRI
 • > 3 ON segments; >17.6 mm
• Often bilateral; chiasm/tract involved
• Aggressive early treatment w/high dose steroids & PLEX
Short-segment vs. Longitudinally Extensive Optic neuritis

MS

Short-segment increased T2 signal/enhancement

NMO

Longitudinally extensive optic neuritis on MRI
> 3 ON segments; >17.6 mm

NMO optic neuritis

- Generally poor visual outcome
- Longitudinally extensive optic neuritis on MRI
 - > 3 ON segments; >17.6 mm
- Often bilateral; chiasm/tract involved
- Aggressive early treatment w/high dose steroids & PLEX
MOG Optic Neuritis

• Prevalence
• Characteristics
MOG-IgG Optic Neuritis Prevalence

• ONTT Relook
 • Of all ON patients, who has MOG or NMO?
 • Subjects in ONTT were reanalyzed
 • AQP4 and MOG Abs
 • Clinical phenotype

• Subjects
 • 488 subjects in ONTT (13% had MS)
 • 177 serum samples available
 • Demographics similar to entire cohort

MOG-IgG Optic Neuritis Prevalence

• No ONTT subjects were seropositive for AQP4-IgG
• 3/177 seropositive for MOG-IgG (1.7%)
 • Presentation
 • 3/3 disc edema (1/3 in cohort)
 • One “severe”
 • 3/3 had pain on eye movement
 • 3/3 had normal brain MRIs
 • Vision
 • Presenting VA 20/50 – HM
 • Final VA was 20/20 in 3/3
 • 1/3 had a VF defect
 • Outcome
 • 2/3 had recurrent optic neuritis
 • None had or developed MS after 15 years

Chen et al. JAMA Ophthalmol. 2018;136(4):419-422
Optic neuritis

Series of 43 subjects with ON MRI

<table>
<thead>
<tr>
<th></th>
<th>Swelling</th>
<th>Bilateral</th>
<th>MRI</th>
<th>Improve?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brain</td>
<td>2011 McDon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optic Nerve</td>
<td>Optic Chiasm</td>
</tr>
<tr>
<td>MS (n=13)</td>
<td>0</td>
<td>23%</td>
<td>92%</td>
<td>15%</td>
</tr>
<tr>
<td>NMO (n=11)</td>
<td>9%</td>
<td>82%</td>
<td>82%</td>
<td>0%</td>
</tr>
<tr>
<td>MOG (n=19)</td>
<td>53%</td>
<td>84%</td>
<td>37%</td>
<td>11%</td>
</tr>
</tbody>
</table>

MOG ON Mayo Clinic Series
largest cohort to date

- 87 ON patients multicenter with + MOG-IgG
- Ages 2-79, 57% female, f/u 2.9 yrs
- Avg nadir VA CF; avg final VA 20/30
 - 6% final VA worse than 20/200
- 86% optic disc edema and pain on EOM
- 37% bilateral
- No difference in outcome with IVMP/PLEX/IVIG

MOG ON Mayo Clinic Series

- MRI
 - Optic nerve
 - 82% longitudinally extensive ON
 - 50% perineural enhancement
 - 1/86 had brain MRI “compatible with multiple sclerosis”

- Course (61% treated with immunosuppression)
 - Avg 0.8 relapses per year
 - 10% single episode ON
 - 26% recurrent ON
 - 16% chronic relapsing inflammatory optic neuritis (CRION)
 - 41% other recurrent neurologic symptoms (NMOSD or ADEM)

MOG ON MRI

• Perineural enhancement
MOG ON Mayo Clinic Series

- MRI
 - Optic nerve
 - 82% longitudinally extensive ON
 - 50% perineural enhancement
 - 1/86 had brain MRI “compatible with multiple sclerosis”

- Course (61% treated with immunosuppression)
 - 10% single episode ON
 - 26% recurrent ON
 - 16% chronic relapsing inflammatory optic neuritis (CRION)
 - 41% other recurrent neurologic symptoms (NMOSD or ADEM)

Chronic Relapsing Inflammatory ON

• CRION
 • Multiple episodes of idiopathic ON
 • Unilateral or bilateral
 • Corticosteroid-responsive and –dependent
 • Often requires chronic immunosuppression

• MOG IgG in up to 90%

MOG IgG Associated Disorder Treatment

- Only observational series
 - Relapse treatment
 - IVMP, PLEX, IVIG, cyclophosphamide, lymphocytapheresis
 - Relapse prevention
 - Azathioprine, methotrexate, rituximab, prednisone, mycophenolate, IVIG, MS DMD

- Risk of treatments vs risk of condition of morbidity
MOG Optic neuritis

- Disc swelling common and may be severe
- Often bilateral
- Chronic Relapsing form
- Longitudinally extensive on MRI
- Good outcome
Treatment
J Chen et al

- Retrospective multicenter chart review, n=68
 - Mostly neuro-ophthalmologists so ON over-represented
- At least six mos treatment, 4.5 yr f/u
- Mycophenolate, azathioprine, rituximab partially effective (62-72% relapsed on Rx)
- Monthly IVIG markedly effective (10% relapsed on Rx)
- MS therapies ineffective (but didn’t worsen)

Treatment

• MS DMDs
 • Interferon-beta increased disease activity
 • Mitoxantrone and natalizumab no effect

Treatment Guidelines

• Relapses
 • IVMP (#) followed by oral prednisone (duration)
 • Consider IVIG or PLEX if unresponsive recurrent
 • Does time = Vision?
 • H Stiebel-Kalish et al. Does time equal vision in the acute treatment of AQP-4 and MOG optic neuritis? Poster presentation, 45th Annual Meeting of NANOS, Las Vegas, March 2019
 • #9 patients
 • Worse if treatment delayed by 4, then 8 days
Treatment Guidelines

• Maintenance
 • Indication
 • Recurrence or persistent antibody positivity?
 • Duration
 • At least three months to reduce RR?
• Azathioprine, Mycophenolate, Methotrexate, Rituximab, IVIG
• Don’t use MS DMDs
MOG Antibody Associated Disorders

• What do we know?
 • MOG is almost certainly distinct from NMOSD with AQP-4 IgG
 • MOG is probably distinct from MS
 • Minority of MS patients have MOG antibodies using CBA
 • Pathological overlap
 • ?Radiological overlap
 • MOG clinical profile is more restricted than MS
 • MOG ON is probably an uncommon cause of ON
 • a/w disc swelling, bilaterality, CRION, LEON on MRI, good outcome

• Why do we care?
 • MS and NMO are treated differently
 • MOG treatment not yet defined
Proposed Diagnostic Criteria
MOG-IgG-Associated Disorders
(must meet all three criteria)

• Clinical findings: any of the following presentations:
 • ADEM
 • Optic neuritis, including CRION
 • Transverse myelitis (LETM or SSTM)
 • Brain or brainstem syndrome compatible with demyelination
 • Any combination of the above
• Serum positive for MOG-IgG by cell-based assay
• Exclusion of alternative diagnosis

Who gets MOG testing?

- ON
 - in presence of ADEM
 - Bilateral ON
 - Severe swelling
 - LEON on MRI
- Consider if brain MRI normal or looks like atypical MS
Case One

• 34 y.o. healthy AA man
• Feb 2017 bilateral ON to 20/200 OD, 20/50 OS
• Much better with 5 d IVMP, prednisone taper
• Mar 2017 recurrence in OD
• Much better again in OU with IVMP
• Brain and spine MRIs normal
 • Orbital MRI Longitudinally Extensive ON OU
• LP 6 WBC, pro 40, no OCB
• Feb 2018: vision 20/20 OU with optic atrophy
• Apr 2018: ON OD, Rx IVMP, good recovery
• Apr 2018: MOG IgG ab positive (1:40)
Case Two

• 29 y.o. Cauc Man
• ADEM age 5, ?Rx
• ADEM with Bilateral ON age 11
 • Vision worsened with each pred Taper
 • Resolved with IVIG
• Rx mycophenolate ages 23 – 27 ("demyelinating illness")
 • Discontinued 2017 for no clear indication
• August 2018 (age 28): ON OS, both discs pale
 • Rx IVMP, VA improved from 20/125 to 20/30
• MOG IgG positive 1:40
References

Thank you!